nus-ccl
  • Home
  • People
  • Research
  • News
  • Job opportunities
  • Gallery
  • Contact Us
  • More
    • Home
    • People
    • Research
    • News
    • Job opportunities
    • Gallery
    • Contact Us
nus-ccl
  • Home
  • People
  • Research
  • News
  • Job opportunities
  • Gallery
  • Contact Us

Welcome to the NUS Computational Coastal Lab!

Advanced Modeling and Experiments for Coastal Resilience

Wave-structure interaction

Predicting extreme wave impact on the coastal and marine structures

The advanced numerical simulations of wave-structure interaction under regular or extreme wave conditions.

State-of-the-art CFD models with high-fidelity

State-of-the-Art computational fluid dynamics modelling for soft (flexible engineering and nature-based) infrastructures.

Scour and seepage response around coastal structures

Effects of seepage flows on tsunami-induced scour around a monopile

Coupled hydrodynamic, morphological, and soil models are employed to resolve three-dimensional seepage forces and bed-slope effects around a monopile under tsunami conditions.

Dynamic seepage response in tsunami-induced scour around a pipeline

This study quantifies the role and mechanics of seepage response in tsunami‐induced bed mobility and scour through theoretical analyses and fully coupled hydrodynamic and morphological simulations.  

Hydrodynamics of coastal vegetation

Flow field around real mangrove root system

 

The LES simulations combined with IBM method reveal how the complex mangrove root geometry modifies local flow patterns and enhances turbulence generation.

CFD modeling of flow through flexible stem arrays

The coupled IBM–VFIFE numerical framework reveals how stem flexibility fundamentally alters vortex dynamics and hydrodynamic loads.

Storm surges and ship-induced waves

Full-scale CFD simulation of storm surge over mangrove forests

A full-scale CFD model illustrating how mangrove forests mitigate storm surge impacts through enhanced wave energy dissipation. 

CFD simulation of ship-induced waves

The high-resolution CFD model resolves free-surface deformation and wave patterns induced by vessel motion impacts. 

Wave transformation and overtopping

Solitary waves transformation on a slope

The experiment demonstrates the process of solitary wave shoaling and breaking over a sloping bed.

Wave overtopping over an eco-engineering revetment

The experiment compares irregular wave overtopping at a revetment with and without roughness elements.

Wave impacts and microplastics transport

Breaking wave impacts on an elastic plate

The experiment reveals how structural elasticity and aeration govern breaking-wave impacts, leading to pressure spreading and high-frequency vibrations.

Microplastics transport under open channel flow

The experiment shows the transport rates of microplastics on the bed.


Copyright © 2026 NUS Computational Coastal Lab - All Rights Reserved.


Powered by

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept